If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+18n+8=0
a = 7; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·7·8
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-10}{2*7}=\frac{-28}{14} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+10}{2*7}=\frac{-8}{14} =-4/7 $
| 1=1.08x | | x=14x/15+1 | | x^2-4x+98=0 | | 6x+36=72 | | (x+1)^5=8.5 | | 9x-4=3(x+4) | | 21x–20x=20 | | Y3-8y=0 | | 5.6t^2-7.8=5.5 | | 7x=791 | | 6/7k=9/28 | | 20x/30=4x/60 | | 42x=42x=42 | | 2x|3+1=7x|17+3 | | 5(x+3)+3=43 | | 2(x-3)-8=6 | | 17-3(x+5)=2-13x | | 3(x-3)=5(2x-x) | | 40y^-1y=5 | | 65.9-32.4k/9.9=13.3k | | 8w+5-2w=29 | | 6-6y+y=11 | | 5(x+2)+3(x-5)=19 | | 3(3+d)+2d=12 | | 2(3-3y)+y=11 | | 3x+4=7x+3 | | 1-9v=-53 | | 5^(3x+8)=3125 | | 5^3x+8=3125 | | 4m^2-12m+24=0 | | 8-9(p-2)=8 | | 10x^2-6x+9=24 |